Appendix A

Gravity and general relativity: A
classical field theory perspective

We devote this section for a brief overview of gravity as a classical field theory . We
start with Newtonian gravity as a classical field theory and introduce functional
quantization in order to obtain Poisson’s equation from a Lagrangian (Section
A.1). We then introduce general relativity and the Einstein-Hilbert action from
which the Einstein equation can be derived by functional differentiation (Section
A2).

A.1 Newtonian gravity

For weak fields, the attractive gravitational force I’ exerted by a massive source
on a particle varies inversely with the square of the distance and is proportional to
the masses of the source and the particle, i.e., F' ~ mymy/r?. This behavior is well
described when gravity, or the gravitational field, is considered to be a scalar field,

¢ = @ (t,7), a function of spacetime coordinates (¢, %), which satisfies Poisson’s

!This section is written for the reader who wishes to go through the rest of this thesis without
so much excess mathematical baggage, but it is by no means a fateful representation of general
relativity and classical field theory. A more honest introduction to classical field theory can be
found in the last chapter of Goldstein’s mechanics text [172]. Supplementary information on GR
as a classical field theory could be found in Refs. [2, 173].
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equation
V2® (t,7) = 4nGp (t, T) (A.1)

where p (¢, ¥) is the mass density of a source at time ¢ at position # and G is New-
ton’s gravitation constant. Obviously, when p ~ 6 (Z), corresponding to a point
source at the origin, Eq. (A.1) is satisfied by the Green’s function & = —GM/r,
which incidentally is the gravitational potential (or gravitational potential energy
per unit test mass) at a distance r away from the source. Poisson’s equation thus
captures the predictions of the inverse-square law and could very well be regarded
as synonymous with Newtonian gravity.

However, rather than the field equations for a theory (e.g., Poisson’s equation
for Newtonian gravity), a more appealing theoretical device is the action functional
or, simply, the action. The symmetries of a theory are transparent from the
theory’s action and the field equations could be derived by simply obtaining the
functional derivative of the action with respect to the fields 2. To illustrate this
idea, we introduce the action functional S [®] of Newtonian gravity:

S[®] = / diz <#vq> (t.7)- VO (t,7) + p(t,7) D (t,f)) (A.2)

where d*r = dtd3z where dt is an infinitesimal time increment and d3z is the
volume element, e.g., in spherical polar coordinates (7,6, ), d*z = drdfdpr? sin 6.
For brevity, the dependence on spacetime coordinates (t,Z) will be suppressed in
the following calculations. To obtain Poisson’s equation from the action (A.2),
we expand the action about the field ® and retain only the linear order terms, as
shown,

S [P+ 6P =/d4x (LV(cI)M@) V(P +6D) +p(<I>+(5<I>))

87 (A.3)

=S [®] + / d'r (ﬁwb -V (00) + pécb> + 0 (69°)

2Moreover, the transition from classical to quantum field theory is straightforward from a
theory’s action.
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where S[®] is given by Eq. (A.2) and O (§®?) represents all of the terms of at
least second order in the variation d®. The functional derivative, §5/0®, of the

functional S with respect to the field ® is defined as

S[® + 0] — S[P] = /d%g%éfb 1 j{ () + O (69°) (A.4)

where 59 (- ) corresponds to boundary terms, i.e., total derivatives. To obtain the

functional derivative of Eq. (A.2), we simply perform integration by parts in Eq.

(A.3) to put it into the form of Eq. (A.4), leading to

N (L o
S[® + 50 S[cp]_/da;( 4Wqu>+p)5q>

+ / d*zV - (%V@) + 0 (69°)

3

(A.5)

where the second integral [d*zV (---) is the boundary term . The functional

derivative of the action (A.2) is therefore
L oo

—— V0 +p. (A.6)
m

At this point, it becomes transparent that Poisson’s equation (Eq. (A.1)) emerges
by demanding that the functional derivative vanishes. From the classical field
theory point-of-view, the field ® satisfying Poisson’s equation is on-shell, meaning
that it obeys the classical field equation or, alternatively, that it extremizes the
theory’s action. The rest of the predictions of Newtonian gravity follow from

solving Poisson’s equation.

A.2 General relativity

For strong fields, e.g., in the vicinity of neutron stars and black holes, it is well-

known that one must use the general theory of relativity (GR) to describe the

SRecall Gauss’ law, [, d®zV - A = §_,  do i~ A, where A is an arbitrary vector, d* is the
volume element of V', do and n are the surface element and unit normal to the boundary S = 9y
of volume V. Boundary terms do not contribute to the classical field equations; however, they
are intimately related to the well-posedness of a variational problem [173].
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gravitational field. Instead of a scalar field, however, in GR, gravity is the space-
time curvature encoded in the symmetric tensor g, (), called the metric, where
x = (ct, I) stand for the spacetime coordinates and the indices {a,b, - - - } run over
{0,1,2,3} with index 0 corresponding to time component and {1,2,3} to spatial
components. This metric is coupled to matter sources, just as the scalar field ® is

coupled to p in Eq. (A.1), via the Einstein equation

rG
A

Gap = Top (A.7)

where G, is the so-called Einstein tensor, T, is the matter sources’ stress-energy
tensor (SET), and ¢ is the speed of light. The direct coupling with the SET means
that the gravity is sourced by energy, rather than by only the mass density as
in Newtonian gravity, and that all matter, including light, should be deflected
by gravitational fields — this is the equivalence principle. Furthermore, it should
be emphasized that the Einstein tensor is a second-order nonlinear differential
operator on the metric, i.e., Gay = Gap [Jed> OGed, 0°gea).- In the simplest words,
this means that gravity sources itself *. To see this, the Einstein tensor can be
expressed as
R

Gap = Rap — = Jab (A.8)

where Ry, = R°,, and R = g"R,;, are the Ricci tensor and Ricci scalar, respec-

tively, and R%_; is Riemann tensor given by

R%eq = Thae = Upea + Tl — Teal's, (A.9)
where I'}, are the Christoffel connections,
gad
be = o (Gab.e + Gdep — Goe,d) - (A.10)

In the above expressions, ggp. = 0gqap/02¢ and I3, q=00%, /Ox¢. Although a much
more complex (but theoretically and phenomenologically richer) coupled differen-

tial equation for gravity, for weak fields, g, = diag (=1 +2®,1 — 2®, r?, 7 sin* ),

4This is in stark contrast with Poisson’s equation which implies that the gravity vanishes
everywhere in vacuum; in other words, ® = 0 for all ¢ and 7 if p = 0, assuming that there are no
artificial boundary conditions (typically exploited in electrostatics). In GR, even if Ty, = 0, the
nonlinearity of the Einstein equation guarantees nontrivial vacuum solutions, e.g., black holes.
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Eq. (A.7) reduces to Eq. (A.1); the Einstein equation is the completion of Pois-
son’s equation for strong fields.
As a classical field theory, GR is described by the action:
4
4 C
S [gap] = /d x\/—g<

167G

R) —+ S]W [\If gab] (All)

where g is the determinant of g,, d'z/—¢g is the invariant spacetime volume
element, and Sys [V, gap) is the functional describing the matter fields U and their
coupling with gravity. The first term in the right hand side of Eq. (A.11) is the
Einstein-Hilbert gravitational action. To obtain the Einstein equation (Eq. (A.7)),
we vary the action (Eq. (A.11)) with respect to the metric, gqp, or equivalently, the
inverse metric g%, defined by g,.g® = 6 where 8% is the Kronecker delta. Using

some well-known identities,

R = Ray"
=g = —%\/—_ggabég“b
g0Ry = V.I°
Vagee = 0,

where 1% is some vector °, and V, is the covariant derivative with respect to the

metric gqp ¢, then we obtain

C4
RNTE / d'z ((6v/=9) B+ v=gRad9" + v/=99"0 Rap) + 0Sus
i /d4 5 (B Do) o+ 1o /d4V (V=gI%) + 45
=T | TVI\ Ba = 500 | 097+ 1= [ daVa (V=g ;
ct . " A , )
e / Tov=9Guds"™ + 155 / 2V, (V=91") + 6Su

(A.16)

®Specifically, I¢ = gap (Vcdgab) — (V40%c), but the necessary observation here is that the
variation of the Ricci tensor is a total derivative.

6The covariant derivative V, is the curved space generalization of the partial derivative d,
to make the theory invariant under general coordinate transformations. It satisfies nearly all of
the properties of the partial derivative, such as linearity and Leibnitz rule, but its most notable
feature is that covariant derivatives do not commute, e.g., (VyVy, — Vo Vy) A€ = —RcdabAd for
an arbitrary vector A®.
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where §S = S [gap + 09ap) — S [gap) and we have dropped the terms O (6g%). Noting
that the second term in the last line of Eq. (A.16) is a total derivative, the func-
tional derivative of the Einstein-Hilbert action plus the matter action Sy [V, gap]
is given by

05w
5 \/—16 GO0+ G (A.17)

Finally, defining the matter’s SET, T, in terms of the action Sy, [V, gap] by

5SM . \/—gT

S T, (A.18)

then the Einstein equation (Eq. (A.7)) is obtained by setting Eq. (A.17) to zero.
The rest of the predictions of GR follow by solving the Einstein equation, or for

the on-shell metric, g,p.
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Appendix B

Variation of quadratic and cubic
Horndeski action

In this section, we explicitly write down the steps performed to obtain the contri-

butions of the quadratic and cubic sectors of Horndeski theory,

S [guns 8] = / 2 (G (6, X) — Ga (6, X) O6) (B.1)

to the gravitational field equations. In Eq. (B.1), ¢ is the scalar field, O¢p = V*V,¢
and X = —g® (9,0) (Op¢) /2 is the scalar field’s kinetic density. For brevity, in

what follows, we shall use the notation

oG,

0G;
¢a = aagb (B4)
¢ab = Vavb¢ (B5)

where ¢ = 2,3. It is also useful to note that ¢., = ¢p,. For reference, the full

Horndeski theory and its covariant field equations can be found in Ref. [93].
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B.1 Variation with respect to the metric
The variation of Eq. (B.1) with respect to the inverse metric leads to
1

65 =/d4:c <—§\/—ggab59“b> (Gy — G309)
(B.6)
+ /d4x\/—g [6Gy — 6G30¢ — G300¢)] .

Noting that the Horndeski potentials, G; (¢, X), depend on the metric ¢?° only
through the kinetic density X ~ ¢®¢,¢p, then

(SGZ' = G,-XXab(Sgab (B?)
where
X = —(b";l’. (B.8)

Also, the variation of O¢ with respect to the metric can be obtained as follows,
00¢p =19 (g“bVaVbqb)
= 09""VaVi + 96 (Vo Vi)
= 09"V Vi + ¢”0 (9aOpd — T'5,0:0) (B.9)
= 09"V V¢ — g 0040

60¢ = 69% dap + % 2V, (69™) — g:;V¢ (597)) ,

where to get to the last line we have used the identity

1 .
6ng = _§ [gdavb (5gdc) + gdbva (5gdc) - gaigijc ((59”)} . (BlO)

The variation of the action thus can be written as
1
08 = / d*zv/—g { = 5 Yab (Go — G30¢) + Gox Xap — Gsx XpOop — G3¢ab1 59
+ /d“x\/—g{— Ge% (2V5 (39™) — 9 V¢ (697)) ]

(B.11)
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Performing integration by parts on the second line of the above expression,
- G g
- /d4$v —9G30.Vy (Ogbc) + /d4-TV _973¢cgijvc (59U)

= /d4x\/—_gvb (Gs.) 69" — %/d4$\/—_gvc (G3oe) gij59ij+/va('“)a
(B.12)

where [V, (--+) are boundary terms, we obtain
1
05 = /d417\/ -9 [ — 5Yab (Go — G30¢) + Gax Xap — Gax XD

- G3¢ab + Va (G3¢b) - %gabvc (G3¢c) :| 5gab + /va ( T ) .

(B.13)

The last terms in the square bracket can be expressed as
Va (GB(bb) = G3¢ab + GBa(bb (B14)
Vi(G30.) = Gz00" + G300, (B.15)

Finally, we obtain the variation of the quadratic and cubic Horndeski action as

. 1
08 = /d4:c\/—g l - égabGz + Gox Xap — Gax X0
- (B.16)

1
+ G3aPr) — égabG3c¢c:| 59 + /Va ().

The functional derivative of S with respect to dg* is therefore

5S 1 | 1 )
5 =vg [_égabG2 + GoxXap — Gax XapO¢ + Gaadp) — égabG;acﬁb } (B.17)

so that the quadratic and cubic Horndeski sectors’ contribution to the Einstein

equation is via the scalar field’s stress-energy tensor (see Eq. (A.18))

Téf) = g G2 — 2Gax Xy + 2G3x XpO P — 2G3aPp) + gapGacd”. (B.18)

B.2 Variation with respect to the scalar field

In scalar-tensor theories such as Horndeski theory, the scalar field, ¢, brings its

own field equation. This can be obtained by varying the action with respect to ¢,

i.e., calculate S = S [¢p + 0] — S [¢)].
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To obtain the scalar field equation for the quadratic and cubic sectors of Horn-
deski theory, we therefore vary Eq. (B.1) with respect to ¢. For the quadratic

sector, we simply note that

where
5X = —g"a (950). (B.20)

In contrast with the variation with respect to the metric, 5g%°, both of the argu-
ments of the potentials G; (¢, X) should now be expanded in terms of the variation

0¢. Thus, the variation of the action from the quadratic sector is
552 = /d4$\/ —g (G2¢5¢ + ngéX)

(B.21)
_ / 27/~ (G — Gax g a (0,66))

where we have dropped the O (6¢?) terms. Performing integration by parts on the

second term, we obtain

38, = / dzv/=g (Gag + 9™V (Gaxda)) 00 + / Val--). (B.22)

For the cubic sector, we note that
—5 [GgDQb] = — (5G3) D¢ — G3|:| (5¢)

(B.23)
= — (G3p0¢ + G3x0X) O — G50 (5¢)) .

Perform integration by parts once on the second term and twice on the third term,

we obtain

583 = /d4:)3\/—_g [—G3p — 9"V, [Gsx $a0¢] — OG3] 56 + / Vao(--). (B.24)

Finally, by adding Egs. (B.22) and (B.24), we obtain the variation of Eq. (B.1)
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with respect to the scalar field !:

08 = /d456v —g {qus +¢"'V, (Gox¢a)
(B.25)
— Gy — 9"V [Gax $a0¢) — OGS

6¢+/Va(---).

The functional derivative, 05/0¢, is therefore the expression inside the square
brackets of the first integral. By setting this to zero, we end up with the field
equation satisfied by ¢:

[Gap + gV (Gaxda)| + [~Gse — 9"V [Gsx9.0¢] — OGs] = 0. (B.26)

As a humble check, for a minimally coupled scalar field ¢ in a potential V' (¢), or
quintessence models, Gy = X — V (¢) and G3 = constant, Eq. (B.26) reduces to
the Klein-Gordon equation, O¢ = —V" (9).

TAn assumption here is that the scalar field does not directly enter the matter action
Sn (¥, gap), €., 6Sy/0¢ = 0. This is supported by the equivalence principle which must be
valid even for scalar-tensor theories.
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